- (S3.2) updating Θ with a value computed by Θ +max $\{\Delta_1, \Delta_2, \ldots, \Delta_{f|k|}\}$; and
- (S3.3) finding the part of the schedule for ST_k by recomputing the robot waiting times with the updated cycle time Θ :

where:

- EST_{k_q} or ST_{k_q} is the EST or the ST having the single-cluster tool C_i and a branch thereof, B_{i_q} .
- 3. The method of claim 1, further comprising:
- identifying, in the treelike hybrid K-cluster tool, ST_j with $j=\max_{l\in P}\{1\}$, and one or more ESTs of ST_j , the one or more ESTs being denoted as EST_{j-1} , EST_{j-2} down to EST_i such that an upstream adjacent tool of C_i is a fork tool;
- determining a first part of the schedule for ST_j by performing the generating algorithm;
- determining a second part of the schedule for EST_{j-1} based on the first part of the schedule;
- repeating determining one part of the schedule EST_{j-m} based on a determined part of the schedule for EST_{j-m+1} until the one or more ESTs are scheduled.
- 4. The method of claim 2, further comprising:
- identifying, in the treelike hybrid K-cluster tool, ST_j with $j=\max_{l\in F}\{1\}$, and one or more ESTs of ST_j , the one or more ESTs being denoted as EST_{j-1} , EST_{j-2} down to EST_i such that an upstream adjacent tool of C_i is a fork tool;
- determining a first part of the schedule for ST_j by performing the generating algorithm;
- determining a second part of the schedule for EST_{j-1} based on the first part of the schedule; and
- repeating determining one part of the schedule EST_{j-m} based on a determined part of the schedule for EST_{j-m+1} until the one or more ESTs are scheduled.
- 5. The method of claim 1, wherein R_k is single-arm or double-arm.
- **6**. The method of claim **2**, wherein R_k is single-arm or double-arm.

- 7. A treelike hybrid K-cluster tool having K single-cluster tools each having a robot for wafer handling, wherein the treelike hybrid K-cluster tool further comprises one or more processors configured to execute a process of generating a one-wafer cyclic schedule according to the method of claim 1
- **8**. A treelike hybrid K-cluster tool having K single-cluster tools each having a robot for wafer handling, wherein the treelike hybrid K-cluster tool further comprises one or more processors configured to execute a process of generating a one-wafer cyclic schedule according to the method of claim **2**.
- 9. A treelike hybrid K-cluster tool having K single-cluster tools each having a robot for wafer handling, wherein the treelike hybrid K-cluster tool further comprises one or more processors configured to execute a process of generating a one-wafer cyclic schedule according to the method of claim 3.
- 10. A treelike hybrid K-cluster tool having K singlecluster tools each having a robot for wafer handling, wherein the treelike hybrid K-cluster tool further comprises one or more processors configured to execute a process of generating a one-wafer cyclic schedule according to the method of claim 4.
- 11. A treelike hybrid K-cluster tool having K singlecluster tools each having a robot for wafer handling, wherein the treelike hybrid K-cluster tool further comprises one or more processors configured to execute a process of generating a one-wafer cyclic schedule according to the method of claim 5.
- 12. A treelike hybrid K-cluster tool having K singlecluster tools each having a robot for wafer handling, wherein the treelike hybrid K-cluster tool further comprises one or more processors configured to execute a process of generating a one-wafer cyclic schedule according to the method of claim 6.

* * * * *